展开

无损检测在油田海上建设工程质量监督(2)

发布时间:2013-11-29   |  所属分类:矿业:论文发表  |  浏览:  |  加入收藏

2.3.2 电磁声

电磁声方法是基于涡流和磁场的交互作用,利用电磁声探头产生和接收超声导波。它是将高频电流通入靠近被检金属表面的发射线圈中,在金属表面的趋肤层内感应出相同频率的涡流,若同时在金属表面施加一个磁场,金属中的涡流在磁场的作用下就会产生一个与涡流频率相同的力,即洛仑兹力。洛仑兹力带动金属材料晶格的振动,并在工件内传播就形成了声波。由于电磁超声方法不使用耦合介质,所以它可用于高温、高速、表面粗糙工件的检测。另外,电磁超声的频率由发射线圈中的交流电频率决定,所以它很容易调整检测频率,以适应不同的检测对象和检测要求。而压电超声的检测频率由压电晶片的固有频率决定,在不更换探头的情况下,无法变更频率,这一点无法与电磁超声相比。

电磁声传感器一般分为两种:洛仑兹力式和磁致伸缩式。根据被检测对象材料特性不同,我们可以选取不同型式的传感器。对于非磁性导电材料的检测,一般选用洛仑兹力式电磁声传感器,因为在此材料中声波的产生是洛仑兹力作用在材料晶格上的结果。对于磁性导电材料的检测,根据检测的实际情况,洛仑兹力式和磁致伸缩式电磁声传感器可能都要利用。因为在磁场的作用下,存在磁致伸缩力,再加上洛仑兹力同时影响离子的运动。在磁性材料中,电磁场能改变材料的磁致伸缩系数,从而产生周期变化的磁致伸缩应力迭加在洛仑兹力产生的应力上。在应用高的磁场强度使材料达到磁饱和以后,洛仑兹力成为产生声波的唯一原因。磁致伸缩力在磁场比较小的时候占主导地位,要比相同磁场作用下洛仑兹力机理产生的声波幅值强得多。因此,在磁场比较小的时候,用磁致伸缩式电磁声传感器检测灵敏度比较高,在磁场强度很大以致使材料达到磁饱和的时候,用洛仑兹力式电磁声传感器检测灵敏度比较高。

使用电磁超声检测的材料必须具有导电性或铁磁性,或导电性和铁磁性都具有,这是其应用的局限性之一;另外,EMAT的工作距离比较有限,通常只有几个毫米。EMAT相对压电传感器来说,主要不足是其效率比较低。直到最近,这点不足限制了EMAT在超声检测中的应用。但是,EMAT是目前流行的主要无损评价技术之一。因为它具有几大优点:无需耦合剂;可非接触操作;可高温操作;可利用SH波检测以及适合发射和接收瑞利波、Lamb波和SH波。随着计算机技术、电子技术、信号处理技术等的发展,EMAT技术将在各种应用领域得到不断的改进和发展。

2.3.3 激光超声

在常规的超声检测中,由于超声波换能器本身带宽的限制及换能器与试件之间的耦合等因素影响,无法产生很窄的单个超声脉冲,而激光超声技术可以重复产生很窄的超声脉冲,在时间和空间均具有极高的分辨率。在固体中激光激发超声波的主要机理是热弹性膨胀和试件表面材料熔化、蒸发而形成冲击力两种。若照射到试样表面的激光能量不足以使表面熔化时,试样内超声波脉冲主要是由于试样吸收光能发生热弹性膨胀而产生的。若激光能量足以使照射材料的表面熔化时,材料汽化产生冲量作用于表面,产生了一个法向作用力,激发出幅值较大的超声波。固体中激光超声波信号的检测主要采用换能器法检测和光学法检测。换能器法检测灵敏度较高,但带宽有限,不适合检测宽频带的激光超声信号。而光学检测法可很好解决上述问题。由于激光超声不需任何耦合剂,能够用于粉末、多孔材料,胶体及薄膜等通常接触式换能器不能激发超声的材料的检测。激光超声对被测试件的要求较低,对表面粗糙、曲率大和几何形状十分复杂的物体均能检测。但有一些问题须进一步解决。一是由激光能量到超声能量的转换效率问题。要提高激光超声的强度,可以加大激光辐射能量,但不能太大,否则会损伤被测试件表面。二是激光超声信号检测灵敏度问题。由于换能器不太适合检测激光超声信号,所以应发展光学检测法。光学检测法特别适合于窄脉冲激光产生的宽频带超声信号检测,但光学检测法比换能器检测灵敏度低,因此提高光学检测法的灵敏度是目前发展趋势之一。激光可以在不同形状的试件中激发超声波且是非接触的,易于在高温、高压、有毒和放射性等恶劣环境下进行超声检测,适合于超薄材料的检测和物质微结构的研究。

2.3.4 磁致伸缩技术

铁磁体在外磁场中被磁化时,其外型尺寸会发生变化,即产生磁致伸缩应变,从而在铁磁体内激发弹性导波。反过来,铁磁体在受到磁致伸缩激励力的作用下,其磁性将发生变化,即导致铁磁体的磁导率或磁阻的变化,从而引起导波的反射、透射等。导波在传播过程中,铁磁体内各部分均发生变化,与此相应,其磁导率也将发生变化,它反过来使波的传播特性也发生变化,进而导致铁磁体内磁感应强度发生变化,根据法拉第电磁感应定律,而变化的磁感应强度必定引起接收线圈中的电压变化,通过测量电压信号——导波的反射情况,即可检测出铁磁体构件中是否存在腐蚀、裂纹、破损等缺陷。也可以简单的归纳为:导波产生——基于磁致伸缩效应:即铁磁性材料在外磁场的作用下,其实际的外型尺寸将发生小的改变;导波检测——基于磁致伸缩逆效应:即铁磁性材料受到机械应力(或应变)时,其磁感应强度将发生变化。

转载请注明来自:http://www.uuqikan.com/kuangyelw/4220.html


上一篇:矿山地质灾害防治对策研究
下一篇:浅谈建筑岩土工程勘察相关应用