展开

浅谈大体积混凝土裂缝控制问题

发布时间:2013-11-29   |  所属分类:建筑设计:论文发表  |  浏览:  |  加入收藏

摘 要:分析了大体积混凝土裂缝产生的原因,介绍了施工时避免温度裂缝和沉缩裂缝的控制措施,提出施工前后应采取相应的技术措施来降低混凝土内部与表面的温差,以减小总温差,确保大体积混凝土质量,从而取得良好的经济效益。

关键词:大体积混凝土,裂缝,温差

Abstract: analyzed the mass concrete cracking reason, introduces the construction avoid when temperature crack and heavy crack control measures and Suggestions before and after the construction of the corresponding technical measures should be taken to reduce the temperature difference between the surface of concrete and to reduce the total temperature difference, ensure the quality of mass concrete, and good economic benefit is obtained.

Keywords: mass concrete, cracks, temperature difference

大体积砼产生裂缝的原因,主要是砼所承受的拉应力和砼本身的抗拉强度之间的矛盾发展的结果。为了控制大体积砼裂缝,就必须提高砼本身抗拉强度性能和降低拉应力(特别是温度应力)。而降低拉应力是控制砼裂缝的有效途径,而降低拉应力主要通过减少温度应力和沉缩应力来控制温度裂缝和沉缩裂缝。

一、温度裂缝

1.温度裂缝产生的主要原因:一是由于温差较大引起的,砼结构在硬化期间水泥放出大量水化热,内部温度不断上升,使砼表面和内部温差较大,砼内部膨胀高于外部,此时砼表面将受到很大的拉应力,而砼的早期抗拉强度很低,因而出现裂缝。这种温差一般仅在表面处较大,离开表面就很快减弱,因此裂缝只在接近表面的范围内发生,表面层以下结构仍保持完整。二是由结构温差较大,受到外界的约束引起的,当大体积砼浇筑在约束地基(例如桩基)上时,又没有采取特殊措施降低,放松或取消约束,或根本无法消除约束,易发生深进,直至贯穿的温度裂缝。

2.温度裂缝形成的过程:一般(人为)分为三个时期:一是初期裂缝--就是在砼浇筑的升温期,由于水化热使砼浇筑后2-3天温度急剧上升,内热外冷引起"约束力",超过砼抗拉强度引起裂缝。二是中期裂缝--就是水化热降温期,当水化热温升到达峰值后逐渐下降,水化热散尽时结构物的温度接近环境温度,此间结构物温度引起"外约束力",超过砼抗拉强度引起裂缝。三是后期裂缝,当砼接近周围环境条件之后保持相对稳定,而当环境条件下剧变时,由于砼为不良导体,形成温度梯度,当温度梯度较大时,砼产生裂缝。

3.温度控制:温度裂缝的产生一般是不可避免的,重要的是如何把其控制在规范允许的范围之内,要进行有效的控制,就必须进行科学预测,以保证控制的准确性。对温度应力的控制现场一般是进行温控。在浇筑砼时,采用温度传感片和测温仪,从浇筑开始测温(包括入模温度,环境温度),并及时抹压(特别是初凝前)和保温保湿养护。浇筑完后根据温控指标,及时调整保温保湿养护条件。

温度影响系数受多种因素影响,其中温度、湿度、散热界面(土、空气等),初凝时间、风速、温差等影响较大,特别是风速和温差较大时,温度影响系数大大降低,最高温升将降低。但为防止降温过快,形成大的温度梯度,夏季选用蓄水养护,秋冬季加盖草袋、海绵如果工地气候风大、干燥特征拆模后及时采取防风,保温措施,并及时回填土,结果证明这些方法对温度影响系数的改变是非常有用的,事实表明控制也是非常成功的。

二、沉缩裂缝

砼沉缩裂缝在大体积砼(特别是泵送大流态砼)施工中也是非常多的。主要原因是振捣不密实,沉实不足,或者骨料下沉,表层浮浆过多,砼浇筑后,没有及时抹压实(特别是初凝前的二次拌压),且表面覆盖不及时,受风吹日晒,表面水份散失快,产生干缩,砼早期强度又低,不能抵抗这种变形而导致开裂。

在施工中采用缓凝型泵送剂,延缓砼的凝结硬化速度,充分利用外加剂(特别是缓凝剂)的特性,适时增加抹加次数,消除表面裂缝(特别是沉缩裂缝和初期温度裂缝),特别是初凝前的抹压,这对消除表有效的。

三、保证大体积混凝土质量的措施

1.选择合适水泥和严格控制水泥用量

优先采用525R普通水泥,425R普通水泥等高标号水泥,以减少水泥用量。选用低热水泥,减少水化热,降低混凝土的温升值。并尽量选用后期强度(90或120天),降低水泥量,并延缓峰值。在满足设计和混凝土可泵性的前提下,将425R水泥用量控制在450kg/m3,525R水泥用量控制在360kg/m3。以降低砼最高温升,降低砼所受的拉应力。

2.严格控制骨料级配和合泥量

选用10.40mm连续级配碎石(其中10.30mm级配含量65%左右),细度模数2.80-3.00的中砂(通过0.315n凹筛孔的砂不少于15%,砂率控制在40%-45%)。砂、石含泥量控制在1%以内,并不得混有有机质等杂物,杜绝使用海砂。

3.选择适当外加剂

可根据设计要求,混凝土中掺加一定用量外加剂,如防水剂、膨胀剂、减水剂、缓凝剂等外加剂。外加剂中糖钙能提高混凝土的和易性,使用水量减少20%左右,水灰比可控制在0.55以下,初凝延长到5h左右。

转载请注明来自:http://www.uuqikan.com/jianzhushejilw/5484.html


上一篇:简支梁桥在近场地震作用下桥梁的减隔震特性
下一篇:现浇砼空心楼盖的结构设计探讨